Source code for hep_ml.gradientboosting

"""
Gradient boosting is general-purpose algorithm proposed by Friedman [GB]_.
It is one of the most efficient machine learning algorithms used for classification, regression and ranking.

The key idea of algorithm is iterative minimization of target **loss** function
by training each time one more estimator to the sequence. In this implementation decision trees are taken as such estimators.

**hep_ml** provides non-standard loss functions for gradient boosting.
There are for instance, loss functions to fight with correlation or loss functions for ranking.
See  :class:`hep_ml.losses` for details.

See also libraries: XGBoost, sklearn.ensemble.GradientBoostingClassifier

.. [GB] J.H. Friedman 'Greedy function approximation: A gradient boosting machine.', 2001.
"""
from __future__ import print_function, division, absolute_import

import copy
import numpy

from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
from sklearn.utils.random import check_random_state

from .commonutils import score_to_proba, check_xyw
from .tree import SklearnClusteringTree
from .losses import AbstractLossFunction, AdaLossFunction, \
    KnnFlatnessLossFunction, BinFlatnessLossFunction, \
    KnnAdaLossFunction, LogLossFunction, RankBoostLossFunction


__author__ = 'Alex Rogozhnikov'
__all__ = ['UGradientBoostingClassifier', 'UGradientBoostingRegressor']


class UGradientBoostingBase(BaseEstimator):
    """ Base class for gradient boosting estimators """

    def __init__(self, loss=None,
                 n_estimators=100,
                 learning_rate=0.1,
                 subsample=1.,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 max_features=None,
                 max_leaf_nodes=None,
                 max_depth=3,
                 splitter='best',
                 update_tree=True,
                 train_features=None,
                 random_state=None):
        """
        `max_depth`, `max_leaf_nodes`, `min_samples_leaf`, `min_samples_split`, `max_features` are parameters
        of regression tree, which is used as base estimator.

        :param loss: any descendant of AbstractLossFunction, those are very various.
            See :class:`hep_ml.losses` for available losses.
        :type loss: AbstractLossFunction
        :param int n_estimators: number of trained trees.
        :param float subsample: fraction of data to use on each stage
        :param float learning_rate: size of step.
        :param bool update_tree: True by default. If False, 'improvement' step after fitting tree will be skipped.
        :param train_features: features used by tree.
            Note that algorithm may require also variables used by loss function, but not listed here.
        """
        self.loss = loss
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.subsample = subsample
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.max_depth = max_depth
        self.update_tree = update_tree
        self.train_features = train_features
        self.random_state = random_state
        self.splitter = splitter
        self.classes_ = [0, 1]

    def _check_params(self):
        """Checking parameters of classifier set in __init__"""
        assert isinstance(self.loss, AbstractLossFunction), \
            'LossFunction should be derived from AbstractLossFunction'
        assert self.n_estimators > 0, 'n_estimators should be positive'
        assert 0 < self.subsample <= 1., 'subsample should be in (0, 1]'
        self.random_state = check_random_state(self.random_state)

    def _estimate_tree(self, tree, leaf_values, X):
        """taking indices of leaves and return the corresponding value for each event"""
        leaves = tree.transform(X)
        return leaf_values[leaves]

    def fit(self, X, y, sample_weight=None):
        self._check_params()

        self.estimators = []
        self.scores = []

        n_samples = len(X)
        n_inbag = int(self.subsample * len(X))

        # preparing for loss function
        X, y, sample_weight = check_xyw(X, y, sample_weight=sample_weight)

        assert isinstance(self.loss, AbstractLossFunction), 'loss function should be derived from AbstractLossFunction'
        self.loss = copy.deepcopy(self.loss)
        self.loss.fit(X, y, sample_weight=sample_weight)

        # preparing for fitting in trees, setting appropriate DTYPE
        X = self._get_train_features(X)
        X = SklearnClusteringTree.prepare_data(X)
        self.n_features = X.shape[1]

        y_pred = numpy.zeros(len(X), dtype=float)
        self.initial_step = self.loss.compute_optimal_step(y_pred=y_pred)
        y_pred += self.initial_step

        for stage in range(self.n_estimators):
            # tree creation
            tree = SklearnClusteringTree(
                criterion='mse',
                splitter=self.splitter,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                max_features=self.max_features,
                random_state=self.random_state,
                max_leaf_nodes=self.max_leaf_nodes)

            # tree learning
            residual, weights = self.loss.prepare_tree_params(y_pred)
            train_indices = self.random_state.choice(n_samples, size=n_inbag, replace=False)

            tree.fit(X[train_indices], residual[train_indices],
                     sample_weight=weights[train_indices], check_input=False)
            # update tree leaves
            leaf_values = tree.get_leaf_values()
            if self.update_tree:
                terminal_regions = tree.transform(X)
                leaf_values = self.loss.prepare_new_leaves_values(terminal_regions, leaf_values=leaf_values,
                                                                  y_pred=y_pred)

            y_pred += self.learning_rate * self._estimate_tree(tree, leaf_values=leaf_values, X=X)
            self.estimators.append([tree, leaf_values])
            self.scores.append(self.loss(y_pred))
        return self

    def _get_train_features(self, X):
        if self.train_features is None:
            return X
        else:
            assert all(f in X.columns for f in self.train_features), [X.columns, self.train_features]
            return X.loc[:, self.train_features]

    def staged_decision_function(self, X):
        """Raw output, sum of trees' predictions after each iteration.

        :param X: data
        :return: sequence of numpy.array of shape [n_samples]
        """
        X = SklearnClusteringTree.prepare_data(self._get_train_features(X))
        y_pred = numpy.zeros(len(X)) + self.initial_step
        for tree, leaf_values in self.estimators:
            y_pred += self.learning_rate * self._estimate_tree(tree, leaf_values=leaf_values, X=X)
            yield y_pred

    def decision_function(self, X):
        """Raw output, sum of trees' predictions

        :param X: data
        :return: numpy.array of shape [n_samples]
        """
        result = None
        for score in self.staged_decision_function(X):
            result = score
        return result

    @property
    def feature_importances_(self):
        """Returns feature importances for all features used in training.
        The order corresponds to the order in `self.train_features`

        :return: numpy.array of shape [n_train_features]
        """
        import warnings

        warnings.warn('feature_importances_ of gb returns importances corresponding to used columns ')
        total_sum = sum(tree.feature_importances_ for tree, values in self.estimators)
        return total_sum / len(self.estimators)


[docs]class UGradientBoostingClassifier(UGradientBoostingBase, ClassifierMixin): """This version of gradient boosting supports only two-class classification and only special losses derived from AbstractLossFunction."""
[docs] def fit(self, X, y, sample_weight=None): """Train formula. Only two-class binary classification is supported with labels 0 and 1. :param X: dataset of shape [n_samples, n_features] :param y: labels, array-like of shape [n_samples] :param sample_weight: array-like of shape [n_samples] or None :return: self """ X, y, sample_weight = check_xyw(X, y, sample_weight=sample_weight, classification=True) return UGradientBoostingBase.fit(self, X, y, sample_weight=sample_weight)
[docs] def staged_predict_proba(self, X): """Predicted probabilities for each event :param X: data :return: sequence of numpy.array of shape [n_samples, n_classes] """ for score in self.staged_decision_function(X): yield score_to_proba(score)
[docs] def predict_proba(self, X): """Predicted probabilities for each event :param X: pandas.DataFrame with all train_features :return: numpy.array of shape [n_samples, n_classes] """ return score_to_proba(self.decision_function(X))
[docs] def predict(self, X): """Predicted classes for each event :param X: pandas.DataFrame with all train_features :return: numpy.array of shape [n_samples] with predicted classes. """ return numpy.argmax(self.predict_proba(X), axis=1)
[docs]class UGradientBoostingRegressor(UGradientBoostingBase, RegressorMixin): """Gradient Boosted regressor. Approximates target by sum of predictions of several trees."""
[docs] def fit(self, X, y, sample_weight=None): """Fit estimator. :param X: dataset of shape [n_samples, n_features] :param y: target values, array-like of shape [n_samples] :param sample_weight: array-like of shape [n_samples] or None :return: self """ return UGradientBoostingBase.fit(self, X, y, sample_weight=sample_weight)
[docs] def staged_predict(self, X): """Return predictions after each new tree :param X: data :return: sequence of numpy.array of shape [n_samples] """ for score in self.staged_decision_function(X): yield score
[docs] def predict(self, X): """Predict values for new samples :param X: pandas.DataFrame with all train_features :return: numpy.array of shape [n_samples] """ return self.decision_function(X)